Spatiotemporal Saliency Detection: State Of Art

ثبت نشده
چکیده

Saliency detection has become a very prominent subject for research in recent time. Many techniques has been defined for the saliency detection.In this paper number of techniques has been explained that include the saliency detection from the year 2000 to 2015, almost every technique has been included.all the methods are explained briefly including their advantages and disadvantages. Comparison between various techniques has been done. With the help of table which includes authors name,paper name,year,techniques,algorithms and challenges. A comparison between levels of acceptance rates and accuracy levels are made. KeywordsSpatio temporal saliency detection,temporal detection,Saliency detection etc __________________________________________________*****_________________________________________________

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph-based Visual Saliency Model using Background Color

Visual saliency is a cognitive psychology concept that makes some stimuli of a scene stand out relative to their neighbors and attract our attention. Computing visual saliency is a topic of recent interest. Here, we propose a graph-based method for saliency detection, which contains three stages: pre-processing, initial saliency detection and final saliency detection. The initial saliency map i...

متن کامل

Unsupervised Video Analysis Based on a Spatiotemporal Saliency Detector

Visual saliency, which predicts regions in the field of view that draw the most visual attention, has attracted a lot of interest from researchers. It has already been used in several vision tasks, e.g., image classification, object detection, foreground segmentation. Recently, the spectrum analysis based visual saliency approach has attracted a lot of interest due to its simplicity and good pe...

متن کامل

Discovering salient objects from videos using spatiotemporal salient region detection

Detecting salient objects from images and videos has many useful applications in computer vision. In this paper, a novel spatiotemporal salient region detection approach is proposed. The proposed approach computes spatiotemporal saliency by estimating spatial and temporal saliencies separately. The spatial saliency is computed estimating of color contrast cue and color distribution cue by explo...

متن کامل

A Saliency Detection Model via Fusing Extracted Low-level and High-level Features from an Image

Saliency regions attract more human’s attention than other regions in an image. Low- level and high-level features are utilized in saliency region detection. Low-level features contain primitive information such as color or texture while high-level features usually consider visual systems. Recently, some salient region detection methods have been proposed based on only low-level features or hig...

متن کامل

A parallel spatiotemporal saliency and discriminative online learning method for visual target tracking in aerial videos

Visual tracking in aerial videos is a challenging task in computer vision and remote sensing technologies due to appearance variation difficulties. Appearance variations are caused by camera and target motion, low resolution noisy images, scale changes, and pose variations. Various approaches have been proposed to deal with appearance variation difficulties in aerial videos, and amongst these m...

متن کامل

Video Salient Object Detection Using Spatiotemporal Deep Features

This paper presents a method for detecting salient objects in videos where temporal information in addition to spatial information is fully taken into account. Following recent reports on the advantage of deep features over conventional handcrafted features, we propose the SpatioTemporal Deep (STD) feature that utilizes local and global contexts over frames. We also propose the SpatioTemporal C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016